CoClime - Probability of phytoplankton (Karenia mikimotoi) presence, Southwest Ireland - future prediction (2017 - 2035)

Published by: Marine Institute
Category: Environment
Views: 0
Openness rating:

This is the output of GBM (Gradient Boosting Model) analyses of K. mikimotoi presence and absnece data done by MI OCIS and CoCliME project. This output dataset shows prediction of probability of K. mikimotoi presence in the future (2017 - 2035) in SW Ireland. The analyses was performed in R 3.6.3, with the packages tidyverse 1.3.0 for data handling and visualisation, and xgboost 1.2.0.1 for boosted regression analyses. The dataset used for analyses is available on MI data catalogue (http://data.marine.ie/geonetwork/srv/eng/catalog.search#/metadata/ie.marine.data:dataset.4445) and the dataset used for prediction is requested to be included in MI data catalogue ([20]. CDF-t Climate run (Climate_run_corr.rds) in CoCliME model SOP). This dataset is used to visualise the prediction on R Shiny application for present period (https://marine-institute-ireland.shinyapps.io/K_mikimotoi_probability/ ). None

Suggested Citation: Yamanaka, Tsuyuko; Cusack, Caroline; Clarke, Dave; Nolan, Glenn. (2022) CoClime - Probability of phytoplankton (Karenia mikimotoi) presence, Southwest Ireland - future prediction (2017 - 2035). Marine Institute, Ireland. doi:10/hvtc.

  • Go to resource

Resource: Unnamed resource

URL: https://www.coclime.eu/About

available as HTML

There are no views created for this resource yet.

Additional Information

Field Value
Data last updated 24 November 2024
Metadata last updated 24 November 2024
Created 24 November 2024
Format HTML
License Creative Commons Attribution 4.0
Id23e2b6c8-14f2-4fd6-a1d4-54c047c8791e
Package id9c218704-df83-412e-bf5f-309eab30bce7
Position1
Resource locator protocolWWW:LINK-1.0-http--link
Stateactive
Description
High Value Dataset (HVD) Resource
Applicable Legislation
    API response formats
      API type
      API access url